1,286 research outputs found

    Method and System for Secure Resource Management Utilizing Blockchain and Smart Contracts

    Get PDF
    This disclosure relates to a resource management system of a computing network. The design of the resource management system is an edge-Internet of Things (IoT) framework based on blockchain and smart contracts. The resource management system integrates a permissioned blockchain to link the edge cloud resources with each account for an IoT device, resource usage, and behavior of the IoT device. The resource management system uses credit-based resource management to control the resource of the IoT device that can be obtained from the edge server. Smart contracts are used to regulate behavior of the IoT device and enforce policies.https://irl.umsl.edu/patents/1065/thumbnail.jp

    Method and system for secure resource management utilizing blockchain and smart contracts

    Get PDF
    This disclosure relates to a resource management system of a computing network. The design of the resource management system is an edge-Internet of Things (IoT) framework based on blockchain and smart contracts. The resource management system integrates a permissioned blockchain to link the edge cloud resources with each account for an IoT device, resource usage, and behavior of the IoT device. The resource management system uses credit-based resource management to control the resource of the IoT device that can be obtained from the edge server. Smart contracts are used to regulate behavior of the IoT device and enforce policies. For the most up-to-date information about these patents, including the availability of Certificates of Correction, be sure to check the United States Patent and Trademark Office\u27s free, publicly accessible database: Patent Public Search https://ppubs.uspto.gov/pubwebapp/static/pages/landing.htmlhttps://irl.umsl.edu/patents/1023/thumbnail.jp

    Multi-objective Optimization Based on Improved Differential Evolution Algorithm

    Get PDF
    On the basis of the fundamental differential evolution (DE), this paper puts forward several improved DE algorithms to find a balance between global and local search and get optimal solutions through rapid convergence. Meanwhile, a random mutation mechanism is adopted to process individuals that show stagnation behaviour. After that, a series of frequently-used benchmark test functions are used to test the performance of the fundamental and improved DE algorithms. After a comparative analysis of several algorithms, the paper realizes its desired effects by applying them to the calculation of single and multiple objective functions

    Crossing point phenomena (T* = 2.7 K) in specific heat curves of superconducting ferromagnets RuSr2Gd1.4Ce0.6Cu2O10-{\delta}

    Get PDF
    Crossing point phenomena are one of the interesting and still puzzling effects in strongly correlated electron systems. We have synthesized RuSr2Gd1.4Ce0.6Cu2O10-{\delta} (GdRu-1222) magneto-superconductor through standard solid state reaction route and measured its magnetic, transport and thermal properties. We also synthesized RuSr2Eu1.4Ce0.6Cu2O10-{\delta} (EuRu-1222) then measured its heat capacity in zero magnetic fields for reference. The studied compounds crystallized in tetragonal structure with space group I4/mmm. GdRu-1222 is a reported magneto-superconductor with Ru spins magnetic ordering at temperature around 110 K and superconductivity in Cu-O2 planes below around 40 K. To explore the crossing point phenomena, the specific heat [Cp (T)] was investigated in temperature range 1.9-250 K, under magnetic field of up to 70 kOe. Unfortunately though no magnetic and superconducting transitions are observed in specific heat, a Schottky type anomaly is observed at low temperatures below 20 K. This low temperature Schottky type anomaly can be attributed to splitting of the ground state spectroscopic term 8S7/2 of paramagnetic Gd3+ ions by both internal and external magnetic fields. It was also observed that Cp (T) being measured for different values of magnetic field, possesses the same crossing point (T* = 2.7 K), up to the applied magnetic field 70 kOe. A quantitative explanation of this phenomenon, based on its shape and temperature dependence of the associated generalized heat capacity (Cp), is presented. This effect supports the crossing point phenomena, which is supposed to be inherent for strongly correlated systems.Comment: 12 pages Text+Figs ([email protected]

    Texture analysis using Gabor wavelets

    Get PDF
    Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a \u27rosette\u27 fashion is used as a multi-channel filter-bank feature extractor for texture classification. The \u27rosette\u27 spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles

    The covering number for some Mercer kernel Hilbert spaces

    Get PDF
    AbstractIn the present paper, we investigate the estimates for the covering number of a ball in a Mercer kernel Hilbert space on [0,1]. Let Pl(x) be the Legendre orthogonal polynomial of order l, al>0 be real numbers satisfying ∑l=0+∞lal<+∞. Then, for the Mercer kernel functionK(x,t)=∑l=0+∞alPl(x)Pl(t),x,t∈[0,1],we provide the upper estimates of the covering number for the Mercer kernel Hilbert space reproducing from K(x,t). For some particular al we give the lower estimates. Meanwhile, a kind of l2-norm estimate for the inverse Mercer matrix associated with the Mercer kernel K(x,t) is given

    Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit

    Get PDF
    The n-type alloys between PbSe and PbS are studied. The effect of alloy composition on transport properties is evaluated and the results are interpreted with theories based on random atomic site substitution. The alloying in PbSe_(1−x)S_x brings thermal conductivity reduction, carrier mobility reduction as well as change of effective mass. When all these factors are evaluated, both experimentally and theoretically, the optimized thermoelectric performance is found to change gradually with alloy composition. High zT can be found in all PbSe_(1−x)S_x alloys. The possibility of achieving significant improvement of zT through alloying is also discussed
    corecore